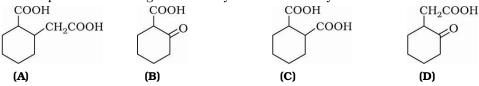


Date Planned : / /	Daily Tutorial Sheet-4	Expected Duration : 90 Min	
Actual Date of Attempt ://	JEE Advanced (Archive)	Exact Duration :	


*46. Identify the binary mixture(s) that can be separated into individual compounds, by differential extraction, as shown in the given scheme. (2012)

 $C_6 II_5 O I a I d C_6 II_5 C O O I I$

C₆H₅CH₂OH and C₆H₅OH

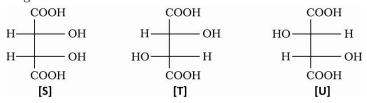
- (D) $C_6H_5CH_2OH$ and $C_6H_5CH_2COOH$
- **47.** The compound that undergoes decarboxylation most readily under mild condition is :

- 48. The compound that does NOT liberate CO_2 , on treatment with aqueous sodium bicarbonate solution, is
 - (A) Benzoic acid

(C)

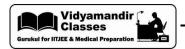
- **(B)** Benzenesulphonic acid
- (2013)

(2012)


(C) Salicylic acid

- (D) Carbolic acid (Phenol)
- **49.** The total number of carboxylic acid groups in the product P.

(2013)


PARAGRAPH FOR QUESTIONS 50 - 51

P and Q are isomeric dicarboxylic acid $C_4H_4O_4$. Both decolorize Br_2/H_2O . On heating, P forms a cyclic anhydride. Upon treatment with dilute alkaline $KMnO_4$. P as well as Q could produce one or more than one from compounds S, T and U given: (2013)

Choose the correct option for 1 and 2:

- **50.** Compounds formed from P and Q are, respectively:
 - (A) Optically active S and optically active pair (T, U)
 - **(B)** Optically inactive S and optically inactive pair (T, U)
 - (C) Optically active pair (T, U) and optically active S
 - (D) Optically inactive pair (T, U) and optically inactive S

51. In the following reaction sequence V and W are, respectively:

52. Different possible thermal decomposition pathways for peroxyesters are shown below. Match each pathway from Column I with an appropriate structure from Column II and select the correct answer using the code given below the lists. (2014)

P
$$\dot{R} + R'\dot{O}$$

Q $\dot{R} + R'\dot{O} \rightarrow R' + \dot{X} + Carbonyl compound \uparrow$

R $\dot{R} + R'\dot{O} \rightarrow R' + \dot{X} + Carbonyl compound \uparrow$

R $\dot{R} + R'\dot{O} \rightarrow R' + \dot{X} + Carbonyl compound \uparrow$

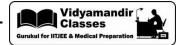
R $\dot{R} + R'\dot{O} \rightarrow R' + \dot{X}' + Carbonyl Compound \uparrow$

S $\dot{R} + R'\dot{O} \rightarrow R' + \dot{X}' + Carbonyl Compound \uparrow$

Column I		Column II		
P.	Pathway P	1.	C ₆ H ₅ CH ₂ O CH ₃	
g.	Pathway Q	2.	C ₆ H ₅ O CH ₃	
R.	Pathway R	3.	O CH ₃ CH ₃ CH ₂ C ₆ H ₅	
s.	Pathways S	4.	C ₆ H ₅ O CH ₃ CH ₃ C ₆ H ₅	

Codes

	P	9	R	S		P
(A)	1	3	4	2	(B)	2
(C)	4	1	2	3	(D)	3


S

1

R

3

9

53. The correct order of acidity for the following compounds is :

(2016)

54. Reagent(s) which can be used to bring about the following transformation is(are)

(2016)

(A) $LiAlH_4$, $in(C_2H_5)_2O$

(B) BH_3 in THF

(C) NaBH $_4$ in C $_2$ H $_5$ OH

(D) Raney Ni / H_2 in THF

PARAGRAPH FOR QUESTIONS 55-56

(2018)

An organic acid $P(C_{11}H_{12}O_2)$ can easily be oxidized to a dibasic acid which reacts with ethylene glycol to produce a polymer dacron. Upon ozonolysis, P gives an aliphatic ketone as one of the products. P undergoes the following reaction sequences to furnish R via Q. The compound P also undergoes another set of reactions to produce S.

$$S \leftarrow \underbrace{ \begin{array}{l} 1)H_{2}/Pd-C \\ 2)NH_{3}/\Delta \\ 3)Br_{2}/NaOH \\ 4)CHCl_{3},KOH,\Delta \\ 5)H_{2}/Pd-C \end{array}}_{\begin{subarray}{l} P & 1)H_{2}/Pd-C \\ 2)SOCl_{2} \\ \hline 3)MeMgBr,CdCl_{2} \\ 4)NaBH_{4} \\ \end{subarray}} Q & \begin{array}{l} 1)HCl \\ 2)Mg/Et_{2}O \\ \hline 3)CO_{2}(dryice) \\ \hline 4)H_{3}O^{+} \\ \end{subarray}} R$$

55. The compound R is

 \odot

(B)

(C) CO₂H

(**D**)

 HO_2C

56. The compound S is

lacksquare

57. The correct order of acid strength of the following carboxylic acids is :

$$H$$
 H_3C OH IV

(2019)

(A) I > III > IV

(B) II > I > IV > III

III

(C) III > II > IV

(D) I > II > III > IV